Q.P.Code: 20ME0303

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year II Semester Regular & Supplementary Examinations August-2023

BASIC THERMODYNAMICS (Machanical Engineering)

	(Mechanical Engineering)			
Ti	me: 3 Hours	Max.	Mar	ks: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I			
1	a Define the following terms	CO ₁	L1	6M
	i) System ii) Boundary iii) Surroundings			
	b What is quasi static process? Explain in detail.	CO1	L2	6M
	OR			
2	Classify different work transfers. Explain them.	CO ₁	L2	12M
	UNIT-II			
3	a 10 kg of fluid per minute goes through a reversible steady flow process.	CO ₂	L4	6M
	The properties of fluid at the inlet are: $P_1 = 1.5$ bar, $\rho 1 = 26$ kg/m ³ , C1=			OIVE
	110 m/s and u1 = 910 kJ/kg and at the exit are $P_2 = 5.5$ bar, $\rho_2 = 5.5$			
	kg/m ³ , C2= 190 m/s and u_2 = 710 kJ/kg. During the passage, the fluid			
	rejects 55 kJ/s and rises through 55 meters. Determine: (i) The change			
	in enthalpy (Δ h); (ii) Work done during the process (W).			
	b In an air motor cylinder the compressed air has an internal energy of	CO ₂	L4	6M
	450kJ/kg at the beginning of the expansion and an internal energy of			
	220kJ/kg after expansion. If the work done by the air during the			
	expansion is 120kJ/kg, calculate the heat flow to and from the cylinder.			
4	OR		144	1.3
4	Derive the reversible adiabatic process law $pv^{\gamma} = c$.	CO ₂	L3	12M
10	UNIT-III			
5	Derive the equation for computing the entropy change of an Ideal gas.	CO3	L3	12M
,	OR			
6	a State and Explain Dalton law of partial pressure.	CO3	L2	6M
	b How the partial pressure in gas mixture related to mole fraction	CO3	L2	6M
	UNIT-IV			
7	Develop the expression for air standard efficiency, work done of an Otto	CO4	L6	12M
	cycle.			
0	OR			
8	Derive an expression for air standard efficiency of dual combination	CO4	L6	12M
	cycle.			
	UNIT-V			
9	A simple Rankine cycle works between pressures 28 bar and 0.06 bar, the	CO ₅	L3	12M
	initial condition of steam being dry saturated. Calculate the cycle			
	efficiency, work ratio and specific steam consumption.			
10	OR			
10	A steam power plant operates on a theoretical reheat cycle. Steam from	CO5	L3	12M
	boiler at 150 bar, 550°C expands through the high pressure turbine. It is			
	reheated at a constant pressure of 40 bar to 550°C and expands through the			
	low pressure turbine to a condenser at 0.1 bar. Draw T-s and h-s diagrams.			
	Find: (i) Quality of steam at turbine exhaust; (ii) Cycle efficiency; (iii) Steam rate in kg/kWh.			
	owani tate in Ng/NWII.			

*** END ***